About Defence Institute of Physiology and Allied Sciences

Defence Institute of Physiology and Allied Sciences

Articles by Defence Institute of Physiology and Allied Sciences

Endogenous Ligands of Toll Like Receptors: A Danger Signal to the Brain Memory at High Altitude

Published on: 15th October, 2018

OCLC Number/Unique Identifier: 7877908260

Sojourn to high altitude may affect various human systems if proper acclimatization not followed. If acclimatization failed, sojourners may suffer with high altitude sickness such as acute mountain sickness (AMS), high altitude pulmonary edema (HAPE) and high altitude cerebral edema (HACE). Although a sojourner’s tolerance to high altitude hypoxia varies according to differences in physiology and physical conditioning. Acute mountain sickness may cause headache, insomnia, dizziness, nausea, vomiting and fatigue. While HACE is more serious stage where brain swelling occurs and it is potentially fatal. A sojourner with HACE may experience confusion, amnesia, delusions, and loss of consciousness. Staying in high altitude (above 9000 feet) environment poses low oxygen supply (hypobaric hypoxia) to the different body organs including brain.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

Association of Toll-like receptor 2, 4, and 9 gene polymorphism with high altitude induced thrombosis patients in Indian population

Published on: 8th February, 2019

Venous Thromboembolism (VTE) is a multifactorial disease that is influenced by individual genetic background and various environmental factors, high altitude (HA) being the one. HA exposure may cause release of several damage associated molecular patterns (DAMPs), which act as ligand for various immune receptors. Previous studies on western population involving SNPs analysis of TLRs demonstrated that TLRs are involved in development and progression of several cardiovascular diseases. But, no such study has been done in Indian population in context of HA exposure. TLRs, being receptors play a significant role in manifestation and elimination of diseases by recognition of specific ligands and downstream signal transduction therefore; the genetic variation in TLRs could be implicated for imparting varying response of individuals to discrete diseases. Therefore, in accordance with it, in present study changes in protein structures of TLR2 and TLR4 due to presence of SNP were accessed by in-silico tools to observe whether the mutation has effect on protein structure and integrity which further influencing its function. The results showed that SNP harbouring protein has decreased functional pockets, thus may be protective for disease. Taking this lead further to genotypic level, first time association between Toll-like receptor genes polymorphism and risk of high altitude induced venous thrombosis is analyzed in Indian population by PCR RFLP method. Though the result showed initial trend that TLR2 and TLR9 SNP are monomrphic in distribution and for TLR4 there was no significant difference in distribution of SNP between healthy and HA-DVT group, these SNPs have potential to be used as susceptibility markers if studied in large population size. 
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

Impact of COVID-19 pandemic on anti-microbial resistance and secondary microbial infections

Published on: 25th February, 2021

OCLC Number/Unique Identifier: 9031335484

Corona Virus Disease-2019 (COVID-19) has become one of the most serious diseases in the history of mankind. It has captured the entire world and solutions are yet to be discovered to fight this global crisis. The outcomes of COVID-19 are influenced by a variety of pre-existing factors. The secondary microbial infections are one of the prominent ones that are major contributors for Antimicrobial Resistance (AMR) as they warrant the use of antimicrobial medications. The present review aimed at exploring the potential relationship between AMR under such circumstances and COVID-19 related outcomes. The published literature across the globe has delineated that the impact of COVID-19 may have worsened by a great degree due to the presence of secondary infections majorly bacterial ones. The consequences of COVID-19 have been fatal and a significant proportion can be a major attributor to AMR, either directly or indirectly. Although, there is a dearth of studies that can establish a very strong and direct relationship between AMR and negative COVID-19 outcomes so in-depth research on this topic is required to further explain this relationship in detail. 
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat